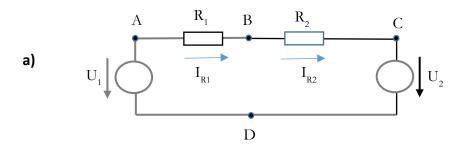

Chapitre II - Série 1 - Exercice I - Enoncés

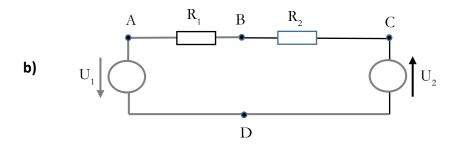
On considère le circuit suivant.

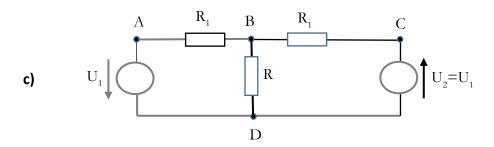
- 1) En exprimant la tension U_{AB} , calculez le courant qui traverse la résistance R_1 et donner son sens (U = 2V, R_1 = 1kOhm, R_2 = R_3 = 2kOhm). Calculer U_{CB} et en déduire la valeur des courants dans R_2 et R_3 .
- 2) Faire de même avec le circuit suivant.

3) Faire de même avec le circuit suivant.

Réponses : 1)
$$U_{CB} = -1V$$
, $I_{R2} = -0.5 \, mA$, $I_{R3} = -0.5 mA$


2)
$$U_{CB} = 1V$$
, $I_{R2} = 0.5 \, mA$, $I_{R3} = 0.5 mA$

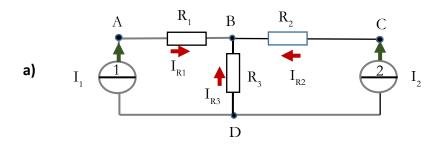

2)
$$U_{CB} = 1V$$
, $I_{R2} = 0.5 \, mA$, $I_{R3} = \frac{U_{CB}}{R_3} = 0.5 mA$


Chapitre II - Série 1 - Exercice II - Enoncé

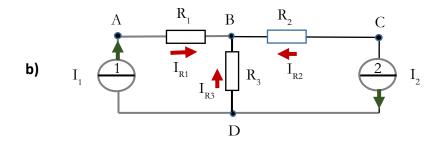
Il s'agit de calculer le potentiel U_{BD} et le courant dans chaque résistance dans le cas des circuits a) et b) en fonction des tensions et des résistances.

- 1) Faire les calculs pour les cas a) et b) si $U_1 = U_2 = 3 \text{ V}$ et $R_1 = R_2 = 1 \text{ kOhm}$, et indiquer dans ce cas le sens du courant qui traverse les résistances.
- 2) Dans le cas particulier c), que vaut le courant dans la résistance R?

Réponses:


a)
$$I_{R1} = I_{R2} = \frac{U_1 - U_2}{R_1 + R_2}$$
 AN: $U_{AB} = 0 \ V$, $I_{R1} = I_{R2} = 0 \ A$, $U_{BC} = 0 \ V$, $U_{BD} = 3 \ V$

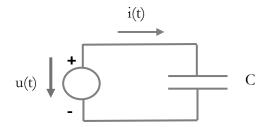
b)
$$I_{R1} = I_{R2} = \frac{U_1 + U_2}{R_1 + R_2}$$
 AN: $U_{AB} = 3 V$, $I_{R1} = I_{R2} = 3 mA$, $U_{BC} = 3 V$, $U_{BD} = 0 V$


c) $I_R=0$

Chapitre II - Série 1 - Exercice III - Enoncé

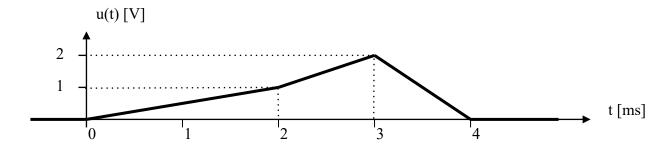
On considère le circuit suivant:

- 1) Dans le cas général :
- a) Calculer la différence de potentiel aux bornes des résistances (UBA, UBC, UBD).
- b) Calculez la différence de potentiel aux bornes des sources de courant 1 et 2.
- 2) Application numérique avec $I_1 = I_2 = 1$ mA, et $R_1 = R_2 = R_3 = 1$ kOhm
- 3) Refaire le calcul numérique avec le circuit suivant. Que peut-on en déduire au sujet d'une source de courant ?


Réponses:

Circuit a) .

$$U_{AB}=1V$$
 ; $U_{BC}=-1V;\ I_{R3}=-2mA$; $U_{AD}=3V$;
 $U_{CD}=3V$

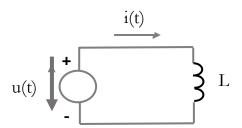

Circuit b) .
$$U_{AB}=1V$$
 ; $U_{BC}=1V$; $I_{R3}=0mA$; $U_{BD}=0$ V ; $U_{AD}=1V$; $U_{CD}=-1V$

Chapitre II – Série 1 – Exercice IV - Enoncé

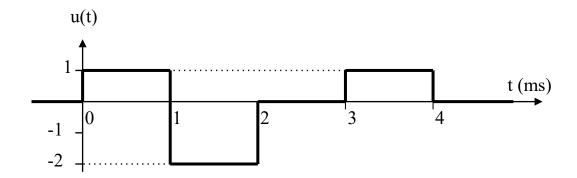
On considère le circuit suivant.

1) Représentez sur un graphique le courant i(t) à travers la capacité de $C=100~\mu F$ aux bornes de laquelle est appliquée la tension u(t) ci-dessous.

- 2) En utilisant le courant, calculer la charge dans la capacité à t=3 ms.
 Retrouvez ce résultat en utilisant la valeur de la tension aux bornes de la capacité à t=3 ms.
- 3) Représentez sur un graphique la puissance instantanée p(t) qui est absorbée. A partir de cette puissance, calculer l'énergie absorbée à t=3 ms. Calculer cette énergie d'une autre manière en utilisant la tension appliquée aux bornes de la capacité.


Après 4 ms, quelle est l'énergie dans la capacité ? Commentez.

Réponses:


$$Q(3ms) = 2 \cdot 10^{-4} C$$

Energie $(3ms) = 2 \cdot 10^{-4} J$
Energie $(4ms) = 0 J$

Chapitre II - Série 1 - Exercice V - Enoncé

On considère le circuit suivant.

1) Représentez le courant i(t) à travers une inductance L = 1 mH aux bornes de laquelle est appliquée la tension u(t) ci-dessous, <u>sachant que ce courant est initialement nul</u>.

- Représentez aussi la puissance instantanée absorbée p(t).
 En déduire l'énergie absorbée à t=4ms
- 3) Quelle est l'énergie absorbée à t=2 ms ? Exprimez cette énergie directement à partir du courant.
- 4) Pensez-vous qu'il existe une manière de rendre la surface négative 'dominante' sur ce graphique p(t) ? Expliquez.
- 5) Supposons à présent que la tension reste à 0V à partir de 3 ms (donc également à 0V de 3 à 4 ms). Quelle sera le courant dans l'inductance ? Comment l'expliquer ?

Réponses:

- 2) L'énergie totale emmagasinée à t= 4ms est nulle.
- 3) L'énergie totale emmagasinée à t=2ms est $0.5\ 10^{-3}$ (Joule).
- 5) Le courant sera égal à -1 A